Secure Intelligent Methods for Advanced RecoGnition of malware and stegomalware (SIMARGL)

Secure Intelligent Methods for Advanced RecoGnition of malware and stegomalware (SIMARGL)


Cybersecurity


With the prevailing risk of cybersecurity breaches, improving the cyber security posture and detection algorithms is of utmost importance. Malware is now recognized as the severe threat for commercial and critical IT systems (e.g. financial sector) , but also for citizens (e.g. mobile malware). Still, currently malware is well understood and can be tackled reasonably well. What is becoming more problematic, is the stegomalware and the use of the information hiding techniques by cyber criminals. And here comes SIMARGL: our goal is to focus on this emerging future threat and to significantly improve malware and stegomalware detection. Currently, cyber criminals use quite simple information hiding techniques, but they learn and improve quickly. Our consortium believes that we cannot stay many steps behind, but provide relevant techniques to be prepared for the future attacks and stegomalwre. SIMARGL consortium does not start from scratch (current solutions are described in the proposal) and it features relevant partners, expertise and links to fulfil the project goals.
Drag a column header here to group by that column
Documente atasate
Cod Not filtered
Nume Not filtered
Tip Not filtered
Fisier Not filtered
Descriere Not filtered
 
No data to display